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This presentation will look at the issue of cancer risk estimates for short-term exposure scenarios

based upon the available literature and methods people have used to evaluate these data.

Using Less-Than-Lifetime Exposures

® Haber’s Law

» toxicity is a linear function of level of
exposure and time

» short-term exposures can be averaged to
produce the equivalent lifetime exposure

» example

— 60 mg/kg for 6 months is equivalent to 15
mg/kg for 2 years

It's common in cancer risk assessment to use what is loosely associated with Haber!, called

Haber's Law, which is based upon acute toxicity associated with gases back in the 1920s and
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1930s. Roughly, Haber's Law assumes toxicity is alinear function of the level of exposure and
the amount of time that exposure occurs. The general assumption is that short-term exposure can
be averaged to produce an equivalent exposure at alower level over alonger period of time.

An obvious example is the one presented here. Y ou can give an animal 60 mg/kg for six months,
and thisis equivalent to 15 mg/kg for two years. This pertains to children's health in that
different windows of exposure are related to completely different patterns of response. What |
am going to discussis not necessarily a childhood issue, per se, because the data that | would
have liked to evaluate was not available. So let uslook at thisissue in adults and see what it

might tell us about potential problems we will have in looking at children.

Previous Studies

® Human Data
» Kaldor et al, 1988; Dedrick and Morrison, 1992

—secondary cancers in patients given
antineoplastic agents

—risk seems best associated with total
accumulated dose

® Animal Data

» individual compounds (Drew et al., 1983; Melnick
et al., 1990)

» multiple compounds (McConnell et al, 1992)
» mixed results

There have been a number of previous studies of thisissue in the literature; | am going to cite a
few here. I'll begin with the studies by Kaldor? and Dedrick and Morrison®, who studied human
populations. Both groups of researchers were looking at secondary cancers that occur in patients
given antineoplastic agents. Their basic conclusions from these studies were that risks seem to
be best associated with total accumulated dose. So their argument would be that averaging dose
isimproper in this case; that is, you cannot take an average over a period of time and expect it to

get the same answer for short-term and long-term exposures.
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In the animal literature, there have been several publications on this and many of them deal with
individual compounds. | have given two examples here, one from the National Toxicology
Program (NTP), the Drew et a.* study, and another NTP study Melnick et al.> on separate
chemicals. Several groups have looked at multiple compounds. McConnell® looked at multiple
compounds. A problem with respect to these analyses is that they are not using consistent
methods of analyzing the data and they are not evaluating data that are derived in consistent
fashions, so that you have analyses that are not easily compared. It isdifficult to discussthe
implications of these findings across multiple chemical end points as a general rule for risk
assessment. Specifically, it isimportant to identify the response attributes that help us to avoid
mistakes in terms of time-averaging of doses. These studies also have multiple and mixed results

depending upon the chemicals being evaluated.

Theoretical Studies

@ Crump and Howe, 1984; Kodell et al.,
1987; Chen et d., 1988; Murdoch et al.,
1992; Portier, 1987; Portier and Edler,
1990.

» basically, anything is possible
» initiators have greatest effect early in process
» promoters have greatest effect late in process

» for multiple stages, the | ater the stage effected
by the chemical, the more effective the
chemical will belatein life

Several theoretical studies have looked at thisissue aswell ™. For example, it is possible to
hypothesi ze a theoretical mechanism by which cancer can arises, and then use this hypothetical
mechanism to model what happens to lifetime risk when exposure is early, what happens when
exposure islate, what happensif the exposure is short, what happensiif it's long, or what happens

if it occursin this narrow window in which important biological events are occurring. There are
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anumber of studiesthat have reported these types of analyses. | have done some of these
myself, and believe me, | can show you any type of response in these theoretical models. These
types of analyses are an informative and insightful means of looking at the question. Much of
what we understand about averaging exposure in carcinogenesis studies arise from these types of
analyses. The obvious ones deal with initiators and promoters, and the number of stages', but

there are others as well.

NTP Stop-Exposure Studies

® 1-Amino-2,4- @ Furan
dibromoanthraquinone e Methyleugenol

® 2,2-Bis(bromomethyl)- ¢ o-Nitroanisole
1,3-propanediol

e 1,3-Butadiene
® Coumarin
® 3,4-Dihydrocoumarin

® Oxazepam
@ Pentachlorophenol
@ Salicylazosulfapyridine

@ Hexachlorocyclopenta-
diene

| did not want to walk you through all of these possible mechanisms and mechanistic models;
instead, | want to do something dlightly different that is solidly linked to data. The National
Toxicology Program has done 12 studies**% in which the chronic bioassay includes exposure
groups for which the exposure was stopped early in the study but the animals were followed
through to the end of the study. These are what | will refer to as the stop-exposure studies of the
NTP.

The chemicals studied in these bioassays varied from 1, 3-butadiene'’, which had four separate
stop exposures, to some of the others that just had one stop exposure. The 12 compounds studied

are shown in the dlide (Slide 5).
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All of these studies are done under the same good laboratory practice (GLP) protocols. The
pathology is conducted under the same methods; the pathological slides are prepared and read
the sameway. The analyses presented in the technical reports are all identical so we are looking
at afairly consistent dataset to make this comparison. In addition, the data were available for me
to make survival adjustmentsin all of these studies. Thisisvery important since some of these
stop-exposure studies have high exposures with some degree of toxicity and you have to adjust

for survival differences.

Experimental Designs
NTP Stop—Exposure Studies

Significant Experimental Design

Endpoint [Units] Dose (Weeks
on Study)

Methyleugenol Natura] leef Kidney, Glandular | [mg/kg gavage] O,
Flavoring ,\SA‘O'“aCh Malignant | 3775150 (105);
esothelioma (clear
evidence for each 300 (52)
endpoint)

Chem|cal

o-Nitroanisole Synthesis of Urinary Bladder, [ppm feed] 0, 222,

Kidney, Large Intestine .
Azo Dyes (clear evidence for each 666, 2000 (104)’

and endpoint); Mononuclear | 6000 (27); 18000

Cell Leukemia (27)
o-Anisidine (chemical-related

increase); Forestomach

Oxazepam Anxiolytic Kidney (equivocal [ppm feed] 0O, 625,
Drug SHGIETES) 2500, 5000 (up to
105); 10000 (26)




(DRAFT FOR REVIEW DO NOT CITE OR QUOTE)

Experimental Designs
NTP Stop-Exposure Studies

Significant Experimental Design
Chemical Use | TR# Endpoint [Units] Dose (Weeks
on Study)
Pentachlorophenol Pesticide, | 483 Nose, Malignant | [ppm feed] 0, 200,
Fungicide M esothelioma 400, 600 (105);
(some evidence in 1000 (52)
stop study only)

Salicylazo- Anti- 457 Urinary Bladder [mg/kg gavage] O,
sulfapyridine microbial (some evidence) 84, 168, 337.5 (up
Drug to 105); 337.5 (26)
Hexachloro- 437 No Tumors
cyclopentadiene

| have listed four separate tables with all of the NTP stop studies. | am not going to walk you

through each and every one of them, but | will give you the basics of one of them. Let'slook at
2, 2-bis(bromomethy!)-1,3-propanediol*®. This chemical is aflame retardant, which isthe
second one in my table here (Slide 6). There were a number of significant cancer findingsin this
study. The results shown are for male rats; everything | am going to talk about is restricted to
male rats, except for 1, 3-butadiene, which isin male mice.

The experimental design in terms of the doses used for 2, 2-bis(bromomethyl)-1,3-propanediol
were doses administered in parts per million of feed. There were four exposure categoriesin the
chronic study, control, 2500, 5000 and 10,000 parts per million for 104 weeks. Also, asingle
stop-exposure group was given 20,000 parts per million of propanediol for 13 weeks. Y ou can
scan through these tables and get afeel for the different types of designs that we used in these

studies.
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Skin Tumors Following Exposure to
2,2-Bis(bromomethyl)-1,3-propanediol

Dose | Dosing Time- |Animals |Animals | Response
(ppm) Duration | Averaged | At Risk | With (%)
weeks Dose Tumor

| 0 J 4] 0 [46] 4 | 86

o000] 15_| 2500 | 3 | o1 | w3

I'm just going to skip through them at this point and go on to the next, and walk you through one

of the examples, again, sticking with the 2,2-bis(bromomethyl)-1, 3-propanediol study, which |
think reported 18 separate tumor sites. | am just going to pull one of those tumor sites up for you
to see what we are talking about and how thisis used in the risk assessment.

This particular study has, as | mentioned, five separate groups, one of which is the stop-exposure
group which was given 20,000 parts per million. The dosing duration in that group was 13
weeks. If you do atime average on that dose, then instead of it being 20,000 parts per million
for 13 weeks, the equivalent dose would be 2500 parts per million for 104 weeks, roughly one-
eighth of the original dose. The number of animals at risk is the survival-adjusted number of
animals at risk. The numbers with tumors are given, and the percentage responding arein
column 6.

What you can see in thistable immediately is that the stop-exposure group, which is supposed to
be an equivalent dose of 2500 parts per million, clearly does not match the response seen in the
group of animals that were actually given 2500 parts per million for the entire length of the
study. This group had much higher response than would be expected under chronic exposure at

the time-averaged dose.
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Propanediol Induced Skin Tumors

Stop Exposure yd

® A/ Group L
L 4

P<0.01

e

Now looking at all of them, not just that one, there are three ways in which | can summarize
these data and address the question of the importance of stop-exposures, or short-term exposures
relative to long-term exposures. Let us start by looking at a statistical test of whether or not the
response seen in the stop-exposure groups at the time-averaged dose is significantly different
from what would be predicted by fitting a model through the chronic-exposure doses. That is
what this picture implies; it is again skin tumors resulting from chronic-exposure doses of 2,2-
bis(bromomethyl)-1, 3-propanediol. The smooth curveisaflexible model fit through these data,
and as you can see, it almost fits perfectly. This point above the line is the stop-exposure group
averaged to lifetime exposure. The distance between the stop-exposure group and the lineis
what we are looking for in terms of the statistical significance. Inthis caseit isap-value of 0.01.
This type of test can be generalized to more than one stop-exposure group, and that is what |

have donein this analysis.
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Statistical Significance (p<0.1)

Stop Stop
c larger less
Chemical o i
Chronic Chronic
anthraqumone

Dihydro-
coumarin

Stop Stop

. larger less

Chemical than than
Chromc Chronic

Methyleugenol
Penta-
chlorophenol
SEUIRYIEVAE
sulfapyridine

The next two tables describe our findings in this type of analysis, categorizing them into the four
obvious categories. | will just go through one to give you some indication of what isin this
table. Againwe'relooking at 2,2-bis(bromomethyl)-1, 3-propanediol. It had 18 significant
tumor sites from the study. Of those 18 sites, in 12 of the sites the stop-exposure group was

significantly different from the chronic-exposure group prediction (column 2). Andinall 12
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cases the response seen in the stop-exposure group was much larger, significantly larger (p<0.10)
than what would have been predicted by the chronic exposure. In six of the cases we could not
detect a statistically significant change (column 5). However of those six cases, five of them
were above and only one was below. So it was not statistically significant, but it was still above.
Y ou can go through all of these and see al of the findings (Slides 12-13). Mixed responses were
observed for butadiene, because it had so many stop exposures sometimes one of the points was
above, sometimes one of the points was below, but the overall effect was still statistically
significant. That iswhat the “mixed” category (column 4) means, for which butadiene has three
tumor sites. The cases in which the stop-exposure response was significantly below that
predicted by time-averaging fell into the category labeled “ stop less than chronic” (column 3).
Adding up the counts from the two tables (Slides 12-13), roughly for 50% of all of the individual
tumor sites we looked at, the stop-exposure responses were significantly above the response
predicted by the time-averaging dose. In only three of the roughly 60 or so cases were they
significantly below. In three of the cases there were mixed responses. And in roughly 50 or
45% of the cases there was no statistical significance between the stop-exposure groups and the
chronic groups.

Thisisahighly significant finding and should not have occurred by chance; you should not have
seen 50% of the responses significantly different from what the chronic would present to you.

So that was the first way of looking at the data.

The second way of these dataisto look at predictions of risk. | am not going to go all the way
down into the low-dose range, but | do like to predict somewhere slightly outside the range of the
data so | am going to predict the dose that gives a 10 % cancer response above background in
these animals for each of these individual compounds with and without including the stop-

exposure groups.

10
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Estimating ED,,

]
| Curve with Stop Group

Curve without Stop Group |

That iswhat this picture shows (Slide 14). Again, we are looking at 2,2-bis(bromomethyl)-1, 3-
propanediol-induced skin tumors. The lower curve isthe model fit through the data, using only
the chronic exposure data. The upper curve is the same model but now fit through all of the data
including the time-averaged stop-exposure group. Asyou can see, this stop-exposure study point
is above the other points and it pulls up the curve upward to be able to fit all of this data
simultaneously. You get asignificant lack of fit, obviously, but you also get a dlight change in
the curve. The EDypisat 19%, since background response is 10%, that is, a 10% increase over
background. The dose that gives you a 10% added response is obtained by going over to this
curve and drawing a straight line down to the dose axis. And you see | have shown two of them,
the one on theright is for the chronic data aone, and the ED1o on the l€eft is for the chronic data
and the stop group. Asyou can see, thereis abig difference between these two in terms of the

impact it has on the estimate of that EDo.

11
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Changes in ED,,

Greater | Greater Can’t Less than
Chemical than 2- | than 2- |compare 2-fold
fold fold change
decrease | increase

Dibromo-
anthraquinone
Propanediol

E——
122 | ] 2 | 3 |
R
R

Coumarin

Dihydro-
coumarin
Furan

Changes in ED,,

Greater | Greater Can’t Less than
than 2- | than 2- |compare 2-fold
fold fold change
decrease | increase

(T2 T I N

zczc: 2 I I

| cnorophenat ||| 2 | ]

o I I R
sulfapyridine

Theresultsfor all 12 studies are summarized in this table (Slide 15). Going back to 2,2-

Chemical

bis(bromomethyl)-1, 3-propanediol (listed as propanediol in thistable), what | did was break it
up into cases where (1) there was a greater than two-fold decrease in the ED1o (column 1), (2)

where there was greater than twofold increase (column 3), (3) where we could not make a

12
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comparison because of some numerical problems associated with zero tumors in some of the
groups (column 4), and (4) less than twofold change in any direction (column 5).

Again, what you find is that the predominant response isin column 2 where you get a greater
than twofold increase in the ED1o. A decrease in the ED1g indicates an increase in potency of the
chemical agent. So the time-averaged stop-exposures, when included into the analysis of the

data, caused an increase in potency.

Estimating Best Averaging Time

T

Stop Exposure yd
qA/ Group > &

v

Instead of averaging
over 104 weeks,
average over 27 weeks

Finally, the last question | can ask, or another way to ook at thisissueis: how much time should
| have averaged over? Instead of averaging the dose over 104 weeks, would | have done better if
| averaged over 52 weeks, or if | averaged over 75 weeks? Actually, | can calculate the averaging
that would have given me perfect agreement between the stop-exposure groups and the model fit
through the chronic-exposure data. That iswhat this graph indicates (Slide 17), again showing
the original data points for propanediol-induced skin tumors. The stop exposure group to the left
of the graph isthe case where | divided it by 104 in order to get the lifetime-averaged dose of
2500 parts per million. However, if | had divided by 27 weeks instead of dividing by 104 weeks,
that would have put the dose directly in line with the chronic data as seen to the right of the

graph, and the response now perfectly lines up with the model.

13
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Equivalent Averaging Time

® Example
» 1000 ppm given for 13 weeks
» 52 week equivalent averaging time
» all of the following would yield equivalent

response

— 1000 ppm for 13 weeks averaged over 52
WEELS

— 250 ppm for 1 year
— 250 ppm for 2 years

The general question iswhat should routinely be used as an averaging time; if thereisan
obvious trend in the data, what does this mean? One key point | wanted to make is at the bottom
of thisdlide (Slide 18). Suppose | had given athousand parts per million for 13 weeks but
averaged it over 52 weeksinstead. That is, suppose my optimum averaging time was 52 weeks,
what does that mean in terms of doses? That means that a thousand parts per million for 13
weeks is equivalent to 250 parts per million for one year. But there's something else to be
learned here, that is, that | cannot tell between 250 parts per million for one year and 250 parts
per million for two years. It istelling me that there may be some time point at which | can stop

exposure because the rest of the exposure does not really have much of an impact on the overall

Best Averaging Times

52
Chemical | Weeks
or less

Methyleugenol

2.1
e
Penta-
chlorophenol
Salicylazo-
sulfapyridine

14




Best Averaging Times

52 52 to 78 | Longer Median
Chemical Weeks weeks | than 78
or less WEELS
Dibromo- 1,0 ) 88,185
anthraguinone
Butadiene 6,8,8,7 | 2,1,2,2 | 1,0,1,1 |30,52,29,
32
Coumarin - 1

_ .
coumarin
S

Furan

risk that 1 would see in this group.

Again, dividing the results into categories to summarize the results, and again focusing on
propanediol, there were only 16 of the 18 propanediol cases (i.e., tumor types) where | could
actually do this. Again, there are problems with this cal culation when the tumor response in the
stop-exposure group is zero, or when the tumor response in al the chronic groupsis zero. Those
two cases where calculations were impossible were excluded. What you see isthat for 14 of the
tumor sites the best averaging time was less than 52 weeks (column 2). For only two of those 16
sitesthat | could analyze was it longer than 78 weeks (column 4). The median averaging time
was 23 weeks (column 6).

If you go through all of these tables and examine all of the information on all of them, you end
up with 49 of the 79 cases having averaging times of less than 52 weeks; 12 of them having
averaging times between 52 and 78 weeks; and 18 of them having averaging times greater than
78 weeks. If you look across chemicals, there are other comparisons to be made, which | did not
summarize. Again, what you seeis a propensity for averaging times that should be less than two
yearsin these studies. Asan overall average, | would choose something on the order of 60

weeks or so as agenera rule.

15
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Summary

® Short-term early exposures averaged over
lifetime generally underestimate importance
of exposure

® Averaging over 2 years for rodents could
reduce potency

@ About 60 weeks averaging time for a 2 year
study would work in many cases

® Need more designed studies addressing
this issue

In summary for this part, short-term early exposures averaged over lifetime generally
underestimate the importance of exposure. Averaging over two years for rodents could clearly
increase the potency of achemical agent. About 60 weeks averaging time for atwo-year study
would probably work in most cases and would not result in responses that are significantly
different from the chronic. We need more studies designed to look at the issue of patterns of
exposure over age, aswell as exposure in chronic studies.

This, and yesterday’ s presentations, got me to thinking about future directions and where are we
going regarding dose, time and age responses for environmental agents. Y ou do not have these
dlides, but | wanted to make afew points. First, risk assessment is moving clearly away from
datasets and more to databases; that is, how do you evaluate and analyze a database for risks, not
an individual data set. Second, we are moving away from the simple concepts of hazard
assessment and dose response assessment into something alittle more complicated. We are
asking ourselves four basic questions. Isthisahazard? What isthe magnitude of therisk asa
function of age, time, dose, et cetera? But also we are asking ourselves. What's the shape of the

response surface as afunction of age, dose, time, et cetera? Is there a threshold or not, and,

16



(DRAFT FOR REVIEW DO NOT CITE OR QUOTE)

what's the limit of inference from the data that we have? Where do | begin to extrapolate and
where do | have good sound scientific evidence to support my predictions?

Thus, we are really now focused on a much more complex series of questionsin looking at the
question of is something a hazard and what's the magnitude of therisk. | would argue that this
moves us into a requirement for biologically-based modeling and away from some of the
empirical work that we have been doing, although thereis still a strong role for empirical work.
We have just finished EPA's evaluation of all the dose-response data for dioxins. We looked at
every single dataset we could find that indicated something about the dose-response structure for
TCDD. We must have looked at somewhere between 600 and a thousand datasets and actually
formally analyzed over 200 datasetsin this evaluation. These included empirical modeling,
mechanistic modeling, all the animal cancer data, non-cancer mechanistic end points, the human
data on cancer and heart disease. These analyses were strictly on 2,3,7,8-TCDD.

| want to demonstrate for you why | am saying it needs to be a database analysis, not a dataset

analysis. | am going to only show you two very simple points from this complicated document.

17
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Future Directions in
Dose/Time/Age Responses to
Environmental Agents

Talk #2

Y esterday, presenters talked about body burdens and their rolein risk. Asshown in this picture,
these are body burdens associated with a 1% increased risk for a variety of different endpoints
from exposure to TCDD. The endpoints are categorized by the type of endpoint rather than by
looking at individual data sets. | will read off my slide so you can see them. These are
biochemical endpoints, endpoints strictly associated with hepatic function (not hepatic
biochemical endpoints, but more frank or functional endpointsin the liver), immune endpoints,
retinol, thyroid function and response, and tissue toxicity.

The purpose of this graph isto show that there is a general trend from biochemical endpoints that
are very close to the Ah-receptor up towards the more distant end point like tissue toxicity.
These are all based on short-term, multi-dose studies, not the chronic/cancer end points. But you
can gain some insight about the question of do | base my risk upon the acutely-toxicity endpoints

or biochemical endpoints, and how does that relate to the tissue toxicity.

18



(DRAFT FOR REVIEW DO NOT CITE OR QUOTE)

Future Directions in Analysis

@ databases instead of data sets
e four questions
» hazard
» magnitude as a function of age/time/dose/etc.
» shape of response surface (thresholds?)
» limit of inference

@ requirement of biology-based modeling

On the other hand, let uslook at single-dose studies. | pulled this out so you can see that they
suggest the same sorts of results. The only difference is the previous graph was adults and this
graph is both adults and developmental end points. | want to focus on three different groupings:
biochemical, and tissue response, and tissue toxicity.

This green line indicates equal EDg;s across developmental and adults. Y ou can see the adult
biochemical response and the developmental biochemical response are effectively the same. The
adult tissue response is slightly higher than biochemical but thereis no change in the
developmental end points. The adult toxicity end points are much higher. The y-axis represents
logyo differencesin EDg;S, so that adult mean response ranges over three orders of magnitude
differencein EDg;. Yet for the developmental endpoints, we have aflat line or no change.
These data clearly indicate that for TCDD, the developmental response is substantially different
than the response seen in adults from single-exposures. We also have graphs like this for
chronic-exposure, for human data, et cetera. It shows some of the complexity that you can pull
out of thisinformation by analyzing the database, not the individual data sets.

The second point | wanted to make about the future is that technology is going to be adriving

force in how we do toxicology in the future. Interms of biology we are going to have more

19
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measures, add more times, add more end points than you ever wanted to look at in your entire
life. They are going to be linked to the individual, so we are not going to actually be looking
necessarily at just population-based measures. People are going to use gene chips, protein chips,
other types of mechanisms which will provide more information on an individual than we will
know what to do with.

Roboticsis going to play amuch greater role. The technology used for roboticsisimproving
such that we are going to have much greater throughput. We will not only have more end points
but we will also have more replicates of these end points. Thus, we are going to have alot more
information, and there is going to be much greater standardization in how it is done because we
are not going to be doing it ourselves, the robotics are going to do alot of it for us.

Also, the technology of computing is going to substantially change in how we analyze and
understand our data. The analysis capacity of modern computersis incredible compared to what
it was just five and seven years ago, and it is going to quantum-leap again in the next five years.
We are going to be able to conduct analyses we did not even think about in the past. We are
going to be able to share information much better than we have in the past.

Tools like artificial intelligence will likely be utilized. | am abig fan of using artificia
intelligence in the analysis of data, especially as a great tool for finding data, organizing it into a
database for analysis, and presenting it to you in away that you can then run in an analysis

program. So | can see some great movement in those tools.

20
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EPA Dioxin Chapter 8

® Human Data ® Models
» cancer » empirical
» heart disease » mechanistic

e Animal Data @ Conclusions
» cancer » EDgy; Range
» noncancer » Shape

» mechanistic » Limit of
Extrapolation

| want to illustrate this, looking at the cDNA microarray technology, where researchers can
evaluate changes in numerous biochemical end points of interest. For example, the cDNA chip
that isillustrated in slide 24 represents a subset of the genes on the cDNA chip that we currently
have at NIEHS, which has 6,000 genesonit. Thisdlideillustrates a subset of the genes that were
looked at in one experiment for peroxisome proliferators. Can you imagine looking at 6,000 end
points and trying to analyze them simultaneously? The good news isthat thisis great
information. The bad newsis, well, “how do we analyze it?” The good newsis, we already
know how to do it, the bad news is we just do not have the toolsto do it yet; we have not

devel oped them.
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Animal Multi-Dose Studies
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Thisisacell-cycle signal cascade from Kohn (1999)?* that just appeared. The point is that we
know alot of what happens in some of these signal cascades. In fact in this case not only do we
know what happens but K ohn has developed a model that works on the computer pointing out
the important pathways, and what signals turn on or off various responses.

If researchers link this model with the chip technologies for proteins and genes, we will have a
great tool for looking at chemically-related effects as a function of age, as afunction of time
since exposure, and as a function of magnitude of exposure. Thisisthe type of tool we are going
to need to use in looking at this type of technology, and thisis going to need to be linked with the
actual overt toxicity that we are going to be trying to find in some of the more mechanistic in-
vivo studies.

In summary | would say that it is clear that we would have age-period cohort effects, and they
play arolein environmental-mediated disease. Technology will likely play a major role in what
we are going to achieve in toxicology in the near future. Health risks have to change to take into
account this new technology. That means multi-disciplinary, highly-complex, biologically-based

methods of analysis are going to be required; they are not going to be the option.
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Animal Single Dose Studies
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My collaborators on the evaluation of stop-studies are Christine Halmes from TERRA, Steve
Roberts and Keith Tolson from the University of Florida, and a number of researchers from
NIEHS, and also my brother, Kenneth Portier, from the University of Florida. Thank you very

much.
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